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J. Ordóñez-Miranda, J.J. Alvarado-Gil*

Applied Physics Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Carretera Antigua a Progreso km. 6, A.P. 73
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In this work heat transport in layered systems is analyzed using a hyperbolic heat conduction equation
and considering a modulated heat source for both Dirichlet and Neumann boundary conditions. In the
thermally thin case, with Dirichlet boundary condition, the well known effective thermal resistance
formula is derived; while for Neumann problem only a heat capacity identity is found, due to the fact that
in this case this boundary condition cannot become asymptotically steady when modulation frequency
goes to zero. In contrast in the thermally thick regime, heat transport shows a strong enhancement when
hyperbolic effects are considered. For this thermal regime, an analytical expression, for both Dirichlet and
Neumann conditions, is obtained for the effective thermal diffusivity of the whole system in terms of the
thermal properties of the individual layers. It is shown that the magnifying effects on the effective
thermal diffusivity are especially remarkable when the thermalization time and the thermal relaxation
time are comparable. The limits of applicability of our equation, in the thermally thick regime are shown
to provide useful and simple results in the characterization of layered systems. Enhancement in thermal
transport and in the effective thermal diffusivity is a direct consequence of having taken into account the
fundamental role of the thermal relaxation time in addition to the thermal diffusivity and thermal
effusivity of the composing layers. It is shown that our results can be reduced to the ones obtained using
Fourier heat diffusion equation, when the thermal relaxation times tend to zero.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Effective models have provided a useful basis for the interpre-
tation of experimental data and understanding of heat transport in
non-homogeneous systems [1]. The most of these models are based
on Fourier law, which is supported by an impressive quantity of
useful and successful results that show a very good agreement with
experimental data for a great variety of experimental conditions
[2,3]. However, it is also well known that Fourier heat diffusion law
predicts an infinite velocity for heat propagation, in such a way that
a temperature change in any part of the material would result in an
instantaneous perturbation at each point of the sample. This
inconsistency has been studied by different researchers, and
a variety of models have been suggested to solve this situation. For
a comprehensive account on this subject the reader is referred to
the review articles of Joseph and Preziosi [4], Ozisik and Tzou [5]
: þ52 999 9875383.
(J. Ordóñez-Miranda), jjag@

son SAS. All rights reserved.
and the recent book by Wang et al. [6]. The origin of this funda-
mental problem is due to the fact that Fourier law establishes
explicitly that, when a temperature gradient at time t is imposed,
the heat flux starts instantaneously at the same time t. Considering
that heat transport is due to microscopic motion and collisions of
particles, atoms and molecules, it is straightforward to conclude
that the Fourier condition on the velocity of heat transport cannot
be sustained [4,7,8]. One of the simplest and accepted models [6] to
solve the inconsistency of Fourier law was suggested by Cattaneo
[9] and independently by Vernotte [10]. These authors incorporate
the finite propagation speed of heat while retaining the basic
nature of Fourier law, modifying the heat flux equation in the form:

J
!ð x!; t þ sÞ ¼ �kVTð x!; tÞ; (1)

where J
! ½W=m2� is the heat flux vector, T [K] is the absolute

temperature, k [W/m K] is the thermal conductivity and s [s] is
a thermal property of the medium known as the thermal relaxation
time, which represents the time necessary for the initiation of the
heat flux after a temperature gradient has been imposed at the
boundary of the medium. Eq. (1) establishes that the heat flux does
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Nomenclature

c specific heat, J/kg K
f frequency, Hz
F dimensionless parameter
I light beam intensity, W/m2

J heat flux, W/m2

k thermal conductivity, W/m K
l thickness, m
q complex wave number, m�1

Q positive constant, W/m3

R reflection coefficient
Re() real part
S heat source, W/m3

t time, s
T temperature, K
x spatial coordinate, m

Greek symbols
a thermal diffusivity, m2/s

3 thermal effusivity, Ws1/2/m2 K
h efficiency at which the absorbed light is converted into

heat
q spatial part of the oscillatory temperature, K
Q positive constant, K
l complex parameter
m classical thermal diffusion length, m
r density, kg/m3

s thermal relaxation time, s
c dimensionless real parameter
u angular frequency, rad/s

Subscripts
ac relative to the time-dependent temperature
amb ambient
dc relative to a time-independent temperature
0 relative to the semi-infinite layer
1 relative to the first finite layer
2 relative to the second finite layer
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not start instantaneously, but rather grows gradually with the
thermal relaxation time after the application of the temperature
gradient. Conversely, s represents the time necessary for the
disappearance of the heat flux after the removal of temperature
gradient [4,6].

From Eq. (1), expanding the heat flux vector in Taylor series
around s¼ 0, and approximating at first order in s,

J
!ð x!; tÞ þ s

v J
!ð x!; tÞ

vt
¼ �kVTð x!; tÞ: (2)

The solution of this equation is given by

J
!ð x!; tÞ ¼ �k

s
e�t=s

Zt

�N

ex=sVTð x!; xÞdx: (3)

This equation establishes that the heat flux vector J
!ð x!; tÞ at

a certain time t depends on the history of the temperature gradient
established in the whole time interval from �N to t. This indicates
that the heat flux has thermal memory, consequence of the finite
value of the thermal relaxation time [11]. In this way, Eq. (3)
predicts a dependence of the time path of the temperature gradient
rather than an instantaneous response predicted by Fourier law.

Otherwise energy conservation equation is given by [2]

V$ J
!ð x!; tÞ þ rc

vTð x!; tÞ
vt

¼ Sð x!; tÞ; (4)

where r [kg/m3] is the density, c [J/kg K] is the specific heat of the
medium and the source S [W m3] is the rate per unit volume at
which the heat flux is generated. Combining Eqs. (2) and (4), the
hyperbolic Cattaneo–Vernotte heat conduction equation is
obtained [9,10]

V2Tð x!; tÞ � 1
a

vTð x!; tÞ
vt

� s
a

v2Tð x!; tÞ
vt2

¼ �1
k

�
Sð x!; tÞ þ s

vSð x!; tÞ
vt

�
; (5)

where a¼ k/rc is the thermal diffusivity of the medium. On the left
hand side of this equation, the second order time derivative term
indicates that heat propagates as a wave with a characteristic speedffiffiffiffiffiffiffiffiffi
a
.

s
r

. Note that the first order time derivative term corresponds to
a diffusive process, which is damping spatially the heat wave. Eq.
(5) reduces to the parabolic heat diffusion equation (based on
Fourier law) for s / 0 or in steady-state conditions
v J
!ð x!; tÞ=vt ¼ 0 [4].

The applicability of Cattaneo–Vernotte equation and its gener-
alizations has been widely discussed in the literature [4,6,12–16]. It
is clear that a physical system would follow the predicted hyper-
bolic behavior if the time scale of the heat transport phenomena
analyzed is of the order of the thermal relaxation time. This
quantity has been reported to be of the order of microseconds
(10�6 s) to picoseconds (10�12 s) for metals, superconductors and
semiconductors [7]. These small values of the thermal relaxation
time indicate that its effects will not be significant if the physical
time scales are of the order of microseconds or larger. In these
situations Fourier approach provides adequate results. However, in
modern applications such as analysis and processing of materials
using ultrashort laser pulses and high speed electronic devices, the
finite value of the thermal relaxation time is necessary to be
considered [11–17].

One of the most interesting questions is the applicability of the
hyperbolic formalism in materials with non-homogeneous inner
structure, such as biological tissues and granular materials, in
which several authors have claimed that they have observed
hyperbolic effects with thermal relaxation times of the order of
seconds [12,14]. This has generated a great controversy, because
another group of authors have argued that it is enough to consider
the traditional Fourier approach [18].

Recently, in the study of heat transport in nanofluids, different
research groups have reported thermal conductivities much higher
than the values predicted by the conventional mean field models
[19,20]. These results have induced to some authors to consider
that the hyperbolic equation for heat transfer could be a good
option to explain the experimental data for the thermal properties
of nanofluids [21]. This is due to the fact that high values of the
thermal relaxation times or the presence of nanoelements could
generate hyperbolic effects and consequently high thermal
conductivity values for a composed system [22], because that in
hyperbolic models; heat transport behaves more wave-like than in
the traditional Fourier parabolic approach [4].
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Fourier [23–28] and hyperbolic models [29–33] have been used
to study heat transport in layered systems. These kind of physical
systems constitute one of the basic configurations for the analysis
and development of effective thermal properties models [1]. This
area of research has provided useful and meaningful results for the
interpretation of heat diffusion and transport using the Fourier law
[24–28]. It is therefore of the main importance to explore the form
and consequences that the hyperbolic heat conduction equation
could have on the effective thermal properties of layered systems.

In this work, hyperbolic thermal wave transport in two-layer
systems is analyzed using the Cattaneo–Vernotte heat conduction
equation, considering a modulated heat source. Boundary condi-
tions of Dirichlet and Neumann type are considered. It is shown
that when both layers are thermally thin or thermally thick,
analytical expressions for the effective thermal properties as
a function of the thermal properties of the individual layers can be
obtained. The results for the thermally thin layers are the tradi-
tional ones obtained using the Fourier approach. In contrast, in the
thermally thick regime, it is shown that effective thermal proper-
ties also depend on the thermal relaxation time of the composing
layers. The consequent enhancement in heat transport is analyzed,
in which the most important effects are observed when thermali-
zation time and thermal relaxation time are comparable. In the
thermally thick regime, an equation for the effective thermal
diffusivity that provides useful and simple results for the charac-
terization of layered systems is derived. The fundamental role of
the thermal relaxation time in addition to the thermal diffusivity,
thermal conductivity and thermal effusivity of the composing
layers is discussed.

2. Formulation of the problem and solutions

The problem to be solved is to find the effective thermal
conductivity and diffusivity of the layered systems shown in Fig. 1,
using Cattaneo–Vernotte approach (see Eq. (5)). The system may be
excited at the surface x¼ 0 by a modulated temperature Tðx ¼ 0; tÞ
or heat source Sðx ¼ 0; tÞ at frequency f of the form [34,35]:

Tðx ¼ 0; tÞ ¼ Qð1þ cosðutÞÞ ¼ Re
h
Q
�

1þ eiut
�i
; (6a)

Sðx ¼ 0; tÞ ¼ Qð1þ cosðutÞÞ ¼ Re
h
Q
�

1þ eiut
�i
; (6b)
Fig. 1. Schematic diagram of the studied layered systems. (a) Semi-infinite one-
dimensional sample of thermal conductivity k0, thermal diffusivity a0 and thermal
relaxation time s0. (b) A layer of conductivity k1, diffusivity a1, relaxation time s1 and
thickness l1 is added to the semi-infinite system of (a). (c) An additional layer of
conductivity k2, diffusivity a2, relaxation time s2 and thickness l2 is inserted between
the two layers of the previous system.
where u¼ 2pf, ReðxÞ is the real part of x and Q ½K� and Q [W/m3] are
two positive constants. For any of these thermal excitations, the
temperature at any point inside the sample (x � 0) is given by:

Tðx; tÞ ¼ Tamb þ TdcðxÞ þ Tacðx; tÞ; (7)

with Tamb being the ambient temperature. Tdc and Tac

(x,t)¼ Re[q(x)eiut] are the stationary raising and periodic compo-
nents of the temperature, due to the first and second terms of the
heat source, respectively. From now on, the operator Re() will be
omitted, taking into account the convention that the real part of
expressions must be taken to obtain physical quantities. Our
attention will be focused on the oscillatory part of the temperature,
due to the fact that it is the quantity of interest in lock-in and
similar detection techniques.

Inserting Eq. (7) into Eq. (5), in its one-dimensional form,
considering that there are not any internal thermal excitations and
taking into account that x and t are mutually independent variables,
then for x� 0 it is obtained that q(x) satisfies the following differ-
ential equation:

d2qðxÞ
dx2 � iu

a
ð1þ iusÞqðxÞ ¼ 0; (8)

whose general solution is

qðxÞ ¼ Aeqx þ Be�qx; (9)

where A and B are two constants that depend on the boundary
conditions at x ¼ 0; l1; l of the corresponding problem and q is
given by:

q ¼
ffiffiffiffiffi
iu
a

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ius

p
¼ cþ ic�1

m
; (10a)

m ¼
ffiffiffiffiffiffi
2a

u

r
¼

ffiffiffiffiffiffi
a

pf

r
; (10b)

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðusÞ2
q

� us

r
: (10c)

Assuming that the layers are in perfect thermal contact [36,37], the
boundary conditions obtained from the usual requirement of
temperature and heat flux continuity at the interfaces are given by:

q
�

x�
�
¼ q

�
xþ
�
; (11a)

k
�
x�
�

1þ ius�
dq
�
x�
�

dx
¼

k
�
xþ
�

1þ iusþ
dq
�
xþ
�

dx
; (11b)

where the superscripts ‘‘þ’’ and ‘‘�’’ indicate that the limit x /

l1(x / l) is taken from the right and left of the length l1(l),
respectively. The form of Eq. (11b) may be derived by either of Eqs.
(2) or (3). In what follows, the explicit solutions established by the
two types of thermal excitations given in Eqs. (6a) and (6b) are
considered, the first one specifying the temperature and the other
heat flux, in both cases, at the surface x¼ 0.
2.1. Dirichlet problem

In this case, according to Eq. (6a); the following boundary
condition is considered:

qðx ¼ 0Þ ¼ Q; (12)

where Q is a non-zero positive constant.
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2.1.1. Semi-infinite layer (Fig. 1a)
In this case the physically acceptable solution [q(x) / 0 when

x / N] is given by:

qðxÞ ¼ Qe�q0x; (13)

where q0 is defined by Eqs. (10a)–(10c) with the thermal properties
of the semi-infinite layer, and x� 0.

2.1.2. Semi-infinite layer in contact with the layer of thickness l1
(Fig. 1b)

In this case, the solution for the spatial part of the thermal wave
and for x� l1 is given by:

qðxÞ ¼ 2Q�
1þ l01

�
eq1l1 þ ð1� l01Þe�q1l1

e�q0ðx�l1Þ; (14)

where q1 is defined by Eqs. (10a)–(10c) for the thermal properties of
the first layer (layer 1), and l01 ¼ k0q0

k1q1

1þius1
1þius0

. Since
q1l1 ¼ l1

m1
ðc1 þ ic�1

1 Þ, the solutions given by Eq. (14) can be classi-
fied as thermally thin when l1c�1

1 =m1 � 1 (which implies that
l1c1=m1 � 1, because c1 � 1) and thermally thick for a layer such
that l1c1=m1[1 (which implies that l1c�1=m1 >> 1, because
c�1 � 1). This classification will be crucial in the comprehension
and analyses of hyperbolic heat transport phenomena, providing
useful and convenient approximations of Eq. (14).

- For a thermally thin material (l1c1
�1/m1�1), Eq. (14) takes the

form,

qðxÞzQe�k0q0
l1
k1 e�q0ðx�l1Þ: (15)
- In the case of a thermally thick material (l1c1/m1[1), Eq. (14)
reduces to,

qðxÞzQ

�
2

1þ l01

�
e�q1l1 e�q0ðx�l1Þ: (16)

Evaluating Eq. (16) at x¼ l1 it is obtained that
qðl1ÞzQð2=ð1þ l01ÞÞe�q1 l1 . Comparing this equation with Eq. (13),
for a semi-infinite medium, it can be observed that they are similar
and only differ by the factor 2/(1þ l01). This interface term is
a consequence of the insertion of layer 1 in contact with the semi-
infinite layer.

2.1.3. Two finite layers in contact with a semi-infinite layer (Fig. 1c)
In this case for x � l, it can be shown that,

qðxÞ ¼ 4Qh1h2

D
e�q0ðx�lÞ; (17)

where,

D ¼
�

h2
1 þ 1

�
b1 þ l01

�
h2

1 � 1
�

b2: (18a)

b1 ¼
�

h2
2 þ 1

�
þ l02

�
h2

2 � 1
�
: (18b)

b2 ¼
�

h2
2 þ 1

�
þ l20

�
h2

2 � 1
�
: (18c)

hj ¼ eqjlj ; j ¼ 1;2: (18d)

lmn ¼
kmqm

knqn

1þ iusn

1þ iusm
; m;n ¼ 0;1;2: (18e)
In analogy with the previous system, the approximations of Eq.
(17) for thermally thin and thermally thick materials can be made,
as follows:

- For thermally thin materials (ljc�1
j =mj � 1; j ¼ 1;2), Eq. (17)

can be written as,

qðxÞzQe�k0q0ð
l1
k1
þ l2

k2
Þe�q0ðx�l1Þ: (19)
If it is considered that the two finite layers of thicknesses l1 and l2
behave as if they were a single one of thickness l ¼ l1 þ l2 and
effective thermal conductivity k, according to Eq. (15) the temper-
ature in this layer can be written in the form:

qðxÞzQe�k0q0
l
ke�q0ðx�l1Þ: (20)

Comparing Eqs. (19) and (20), it is obtained that:

l
k
¼ l1

k1
þ l2

k2
; (21)

which has been previously obtained for stationary systems [2], it is
widely used in thermal characterization [24–27,38] and it has been
shown to be valid for the same boundary conditions in parabolic
heat transport [26,39]. In our case, Eq. (21) is obtained using the
hyperbolic model, and for the case in which layers 1 and 2 are
thermally thin, as defined previously in the form ljc

�1
j =mj � 1, for

j ¼ 1;2. Note that if this condition is solved for u, the following
inequality is obtained,

u <<
ujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ujsj

q ; (22)

where uj ¼ 2aj=l2j is the classical cutoff frequency of the layer j ¼
1;2 [3].

- For thermally thick materials (ljcj=mj >> 1; j ¼ 1;2), Eq. (17) is
given by,

qðxÞzQ

�
2

1þ l02

��
2

1þ l21

�
e�ðq1l1þq2 l2Þe�q0ðx�l1Þ: (23)
Considering again that the two finite layers of thicknesses l1 and l2
behave as if they were a single effective layer of thickness l ¼ l1 þ
l2 and effective thermal diffusivity a, according to Eq. (16) and the
remarks made after it, the temperature in this layer can be written
in the form:

qðxÞzQ

�
2

1þ l02

�
e�qle�q0ðx�lÞ: (24)

Comparing Eqs. (23) and (24), it can be shown that:

c
lffiffiffi
a
p ¼ c1

l1ffiffiffiffiffiffi
a1
p þ c2

l2ffiffiffiffiffiffi
a2
p þ

ffiffiffiffi
2
u

r
ln
	

1
2
j1þ l21j



; (25)

where,

l21 ¼
32

31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ius1

1þ ius2

s
¼ 32

31

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðus1Þ2

1þ ðus2Þ2

vuut e

i
2arctan

 
ðs1 � s2Þu
1þ s1s2u2

!
;

(26)

with 3j ¼
ffiffiffiffiffiffiffiffiffiffiffi
kjrjcj

q
for j ¼ 1;2; being the thermal effusivity of the j-

th layer, c is given by Eq. (10c) for the effective thermal relaxation
time s of the two-layer system. According to the analysis of the
collision term in Boltzmann transport equation for the non-equi-
librium statistical mechanics, the following relation could be
obtained [40]:
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1 ¼ 1 þ 1
: (27)
s s1 s2

It is important to emphasize that Eq. (25) is valid for thermally
thick layers, for which the frequency must follow the inequality:

u >>
ujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2ujsj

q ; (28)

with uj ¼ 2aj=l2j . In order to understand the consequences of Eq.
(25), different limiting cases are considered:

- If the thermal relaxation times are zero s1 ¼ s2 ¼ s ¼ 0 this
is the parabolic limit of Cattaneo–Vernotte equation, in this
case Eq. (25) for the effective thermal diffusivity reduces to:

lffiffiffi
a
p ¼ l1ffiffiffiffiffiffi

a1
p þ l2ffiffiffiffiffiffi

a2
p þ

ffiffiffiffi
2
u

r
ln
	

1
2

�
1þ 32

31

�

: (29)
This formula was derived under the same Dirichlet boundary
condition, using Fourier law, by Lucio et al. [26] and it reduces to
a previous one derived by Tominaga and Ito [24] in the limit u/N.
Lucio et al. [26] have shown that the u dependent term is necessary
to explain previously reported experimental data [25,38], for
a frequency range in which the individual layers are thermally thick
in the traditional definition (lj=mj[1) of Rosencwaig theory [35].
This indicates that the thermal regime where Eq. (29) is valid,
corresponds to frequencies which are not high enough. As
a consequence it is sufficient to consider parabolic effects. There-
fore Eq. (25) is the generalization in the hyperbolic approach, of the
effective thermal diffusivity result obtained by Lucio et al. [26].

- Considering that the frequency is not very high, in such a way that
the thermal diffusivities and thermal relaxation times of the
individual layers fulfill the conditions ujsj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ujsj

q
� usj � 1

for j ¼ 1;2 and performing a first order approximation in usj, it
can be shown that Eq. (25) can be written as:
lffiffiffi
a
p ð1� pf sÞ ¼ l1ffiffiffiffiffiffi

a1
p ð1� pf s1Þ þ

l2ffiffiffiffiffiffi
a2
p ð1� pf s2Þ

þ 1ffiffiffiffiffiffi
pf

p ln
	

1
2

�
1þ 32

31

�

: (30)

This expression is similar to that obtained for the parabolic
approximation (see Eq. (29)); in fact the logarithmic part is the
same. However, the effective thermal diffusivity is slightly different,
due to the weak dependence on the thermal relaxation times.

- For high modulation frequencies in which the condition
usj[maxf1;ujsj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ujsj

q
g being j ¼ 1;2 is fulfilled, and

for an approximation of first order in ðusjÞ�1, the following
expression is obtained from Eq. (25):

lffiffiffiffiffi
as
p ¼ l1ffiffiffiffiffiffiffiffiffiffi

a1s1
p þ l2ffiffiffiffiffiffiffiffiffiffi

a2s2
p þ 2ln

	
1
2

�
1þ 32

31

ffiffiffiffiffi
s1

s2

r �

; (31)

which is independent of the modulation frequency, t is only valid
for very high frequencies and it represents the hyperbolic
generalization of the Tominaga and Ito formula [24,28].

From the definition of thermally thick layers (see Eq. (28)), it is
important to note that there is a constraint among the thermal
relaxation time, the thermal diffusivity and the thickness of the
layers, given by:
sj <
l2j or lj > 2

ffiffiffiffiffiffiffiffi
ajsj

p
: (32)
4aj

The first inequality indicates that for a layer of thermal diffusivity aj
and thickness lj, its thermal relaxation time has a least upper bound
l2j =4aj. This quantity is proportional and very close to the ther-
malization time, obtained in the analysis of thermal transients [3].
The second inequality indicates that when the thermal diffusivity
and thermal relaxation time of a layer are known, its thickness
cannot be made arbitrarily small. This is a limit for the validity of
the hyperbolic approach in the analysis of thermal transport and is
closely connected with the consideration of heat transport as
a collective motion.

2.2. Neumann problem

Considering that the surface x¼ 0 is excited by a periodic heat
flux, this situation can be fulfilled when the opaque surface of
a material is uniformly illuminated by a laser light beam of peri-
odically modulated intensity; the heat source is given by [11,28]:

I0½1þ cosðutÞ�=2 ¼ Re
h
I0
�

1þ eiut
�.

2
i
;

where the I0 ¼ Fhð1� RÞI, being F a parameter determined by the
optical, thermal and geometric properties of the first layer, h is the
efficiency at which the absorbed light is converted into heat, R is
the reflection coefficient of the surface at x ¼ 0 and I ½W=m2� is the
intensity of the light beam. Considering that the sample is
uniformly illuminated with a fixed light source, the factor I0 can be
taken as nearly constant and independent of the modulation
frequency as it is usually assumed in similar problems [11,28,41].
The boundary condition in this case has the following form:

� k
1þ ius

dqðxÞ
dx

����
x¼0
¼ I0

2
; (33)

where kð¼ k0 or k1Þ is the thermal conductivity and sð¼ s0 or s1Þ
is the thermal relaxation time, both of the first layer. From Eqs. (9),
(11) and (33) and for the three systems shown in Fig. 1, the
following results are obtained.

2.2.1. Semi-infinite layer (Fig. 1a)
In this case for x � 0, the temperature is given by:

qðxÞ ¼ I0
2

1þ ius0

k0q0
e�q0x: (34)

2.2.2. Finite layer in contact with a semi-infinite layer (Fig. 1b)
In this case for x � l1, it is obtained that:

qðxÞ ¼ I0
2

1þ ius1

k1q1

2�
1þl01

�
eq1l1�ð1�l01Þe�q1l1

e�q0ðx�l1Þ: (35)

2.2.3. Two finite layers in contact with a semi-infinite layer (Fig. 1c)
It can be shown that for x � l, the expression for the temperature

is:

qðxÞ ¼ I0
2

1þ ius1

k1q1

4h1h2

N
e�q0ðx�lÞ; (36)

where

N ¼
�

h2
1 � 1

�
b1 þ l01

�
h2

1 þ 1
�

b2; (37)
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and all the other parameters have been defined previously (see Eqs.
(18b)–(18e)). Following a similar procedure for the analysis of the
solutions obtained with the Neumann boundary condition than the
one used in the Dirichlet problem, and comparing the temperature
of a system of one finite layer (see Eq. (35)) with the temperature of
the system for two finite layers (see Eq. (36)), the following results
are obtained:

- If both finite layers are thermally thin, it can be shown that

rcl ¼ r1c1l1 þ r2c2l2: (38)

Since the quantity rclA with A being the transversal area of the
layers, represents the heat capacity of the effective layer, Eq. (38) is
just an expected identity, due to the fact that this property is an
extensive thermodynamic variable. This result has been obtained
previously based on parabolic theory for conventional thermal
wave phenomena under the same Neumann boundary condition
[27].

For thermally thin composing layers, ruled by hyperbolic or
parabolic models and obeying the Neumann boundary condition, it
is not possible to obtain a useful formula for the effective thermal
properties of a layered system. This result is in strong contrast with
Eq. (21) for the effective thermal conductivity obtained using the
Dirichlet boundary conditions in the parabolic and hyperbolic
approaches and for stationary heat conduction. Given the charac-
teristics of the boundary conditions, in the limit when the
frequency goes to zero, Neumann condition implies an asymptoti-
cally increasing deposition of thermal energy on the sample
surface. This is not consistent with steady state conditions that
guarantee the validity of the equation for the effective thermal
conductivity given by Eq. (21). Therefore the heat capacity identity
obtained in Eq. (38) for Neumann boundary condition is only
a consistency equation that must be expected to be fulfilled.

- If both composing layers are thermally thick, for the Neumann
boundary condition the same formula found in Dirichlet
problem (see Eq. (25)) is obtained. This indicates that in an
experiment dedicated to measure the effective thermal prop-
erties, for high modulation frequencies, it is equivalent to
establish a temperature or a heat flux boundary condition as
the excitation source at the surface of the sample.
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3. Results and discussions

In this section, the consequences of the obtained equations for
the effective thermal properties are explored comparing with the
conventional parabolic results. Typical values for thermal diffusiv-
ities, thickness and thermal relaxation times reported in the liter-
ature for crystal solids are used (see Table 1) [4,7]. In spite of the
small size of the thermal relaxation time used here, it can be shown
that for ss0, performing modulation frequency scans, a region in
which the hyperbolic heat conduction equation and its conse-
quences are dominant can always be found. Therefore our analyses
will be useful for a very wide range of thermal parameters. On the
other hand, since for thermally thin layers, parabolic and hyper-
bolic models provide the same results under the Dirichlet boundary
Table 1
Thicknesses, thermal diffusivities and thermal relaxation times of the composing
layers.

l1ðmmÞ l2ðmmÞ a1ðmm2=sÞ a2ðmm2=sÞ s1ðhsÞ s2ðhsÞ

20 25 50 20 1 5
condition (see Eq. (21)) and an expected identity for Neumann
problem (see Eq. (38)), only the case in which both composing
layers are thermally thick is going to be analyzed.

In Fig. 2 the effective thermal diffusivity predicted by the
parabolic model (see Eq. (29)) as a function of the modulation
frequency is presented, for various values of the ratio of the thermal
effusivity of layer 2 divided by the thermal effusivity of layer 1
(32=31). In this case both composing layers forming the system are
thermally thick for frequencies such that f [4� 104 Hz, in which
Eq. (29) is valid.

In Fig. 2, it can be observed that the effective thermal diffusivity
is always smaller than the larger thermal diffusivity of the
composing layers, being maximum when the first layer is a perfect
thermal conductor (32=31 ¼ 0) and minimum when the first layer
is a perfect thermal insulator (32=31[1). It is important to note that
in the parabolic limit, for very high frequencies, the curves of
effective thermal diffusivity converge to the horizontal limit line
(31 ¼ 32), with thermal diffusivity¼ 28.57 mm2/s. This result also
corresponds to the predicted by Tominaga and Ito formula [24,28].

In Fig. 3, the hyperbolic effective thermal diffusivity (see Eq.
(25)) as a function of the modulation frequency is shown, for the
thermal properties given in Table 1 and various values of the ratio of
thermal diffusivity of layer 2 divided by the thermal effusivity of
layer 1 (32=31).

In Fig. 3, it is shown that when the product us << 1
ðf << 3:18� 107 HzÞ, the behavior of the hyperbolic effective
thermal diffusivity is very similar to the one predicted by the parabolic
model. In contrast for us[1, the effective thermal diffusivity grows
with modulation frequency, in such a way that surpasses the value of
the thermal diffusivity of layer 1. For even larger values of the
modulation frequency, thermal diffusivity becomes independent of
the modulation frequency. This corresponds to the behavior predicted
by Eq. (31). It is important to emphasize that the values of the effective
thermal diffusivity are larger than the ones obtained using the para-
bolic model.

In Fig. 4, the effective thermal diffusivities predicted by the
parabolic (dashed line) and hyperbolic (solid lines) models for
a system formed by two thermally thick layers as a function of the
modulation frequency are represented. The ratio of thermal diffu-
sivities is 32=31 ¼ 1=2 and three different values of the thermal
105 106 107 108 109
10

Frequency, f (Hz)
4x104

Fig. 2. Effective thermal diffusivity predicted by the parabolic model for a system of
thermally thick layers as a function of the modulation frequency, with different values
of the ratio 32/31 of thermal effusivities of the composing layers.
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Fig. 3. Effective thermal diffusivity predicted by the hyperbolic approach when both
composing layers are thermally thick as a function of the modulation frequency, for
different values of the ratio of thermal effusivities (32/31) and the thermal properties
shown in Table 1.
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relaxation time of layer 2 are used. It can be observed that the
thermal relaxation time has a strong influence on the high values of
the effective thermal diffusivity. In fact, higher thermal relaxation
time produces an increment of the effective thermal diffusivity at
high frequencies. It is from these results that the unusually high
values for thermal diffusivity can be understood. As expected from
the Cattaneo–Vernotte equation, hyperbolic effects are more noto-
rious for high thermal relaxation times. This produces a more effi-
cient heat transport due to the increased importance of the second
derivative in the Cattaneo–Vernotte equation, raising the wave-like
behavior with respect to the diffusive contribution. It is important to
emphasize that the analysis in terms of effective thermal diffusion
privileges the role of thermal diffusivity above the thermal relaxa-
tion time. Taking into account that thermal diffusivity measures the
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Fig. 4. Frequency dependence of the effective thermal diffusivity predicted by the para-
bolic (dashed line) and hyperbolic (solid lines) models for a layered system in which both
finite layers are thermally thick, when the ratio of thermal effusivities is 32/31¼1/2, with
s1¼1�10�9 s and s2 takes the values: s21 ¼ 2� 10�10 s; s22 ¼ 2� 10�9 s and
s23 ¼ 5� 10�9 s:
spatial decay of the thermal wave; and given that this decay is
smaller when hyperbolic effects are dominant, this has the effect of
appearing as an increase of the effective thermal diffusivity.

As it was expected from Eq. (31), Fig. 4 also shows that at very
high frequencies, the effective thermal diffusivity reaches
a maximum value and stays stable for even higher frequencies. This
indicates that the decay of the amplitude of the hyperbolic thermal
waves has a maximum limit as a function of the frequency, due to
the fact that at very high frequencies the dominant term in Catta-
neo–Vernotte equation is the corresponding to the second deriva-
tive that determines a dominant wave-like behavior.

These results indicate that the unusual observed values of
effective thermal properties in composed systems can be due to the
fact that heat transport could be strongly influenced by hyperbolic
effects consequence of relatively high values of thermal relaxation
times. These effects would be especially important in systems with
heterogeneous complex structure where the presence of nanoele-
ments could induce the appearance of dual phase lagging heat
conduction as reported by several authors [22,32,42–44]. This area
of research deserves more investigation, mainly in the develop-
ment of effective models for complex geometries of heterogeneous
systems [1,45–49].

The comparison of the temperature profile obtained directly
from the Cattaneo–Vernotte equation for the two-layer system (see
Eq. (23)) with the temperature profile for a one layer system with
an effective thermal diffusivity given by Eq. (24) is shown in Fig. 5.
In this figure the normalized amplitude (jqðx ¼ lÞj=Q) of the spatial
part of the temperature as a function of the modulation frequency
is represented. The values of the thickness and thermal diffusivities
of the individual layers were taken from Table 1. The thermal
relaxation times are s1 ¼ 1� 10�6 s and s2 ¼ 7� 10�6 s for each
layer, which were taken very close to their corresponding least
upper bounds (s1 ¼ 2� 10�6 s; s2 ¼ 7:8� 10�6 s), given by Eq.
(32). Calculations have been made considering that the ratio of
thermal effusivities of the composing finite layers is 32=31 ¼ 1=2,
30=32 ¼ 4=5 and s0 ¼ 3� 10�9 s. In this case for frequencies such
that f [5� 104 Hz, both layers are thermally thick and Eqs. (23)
and (24) are valid.

Fig. 5 shows that,
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Fig. 5. Frequency dependence of the normalized amplitude of the temperature,
calculated directly using the parabolic and hyperbolic equations for a two-layer
system. The results for the amplitude using hyperbolic and parabolic effective models
for thermally thick composing layers systems are also presented. The parabolic
amplitude and the effective parabolic one are practically superimposed.
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- The amplitude of the temperature predicted by Cattaneo–
Vernotte equation for a two-layer system differs appreciably
from the amplitude predicted by Fourier law and effective
models derived from it. This could be expected, given that the
wave-like form of Cattaneo–Vernotte equation permits an
enhancement of the heat transfer as compared with the purely
diffusive parabolic behavior predicted by Fourier equation.
This enhancement is remarkable when the modulation
frequency is much larger than uj ¼ 2aj=l2j or equivalently
when the thermal relaxation time of each layer is close to its
thermalization time (l2j =4aj). In this case the thermal diffusivity
is given by Eq. (31).

- It can be observed that the effective model developed in this
work provides a good approximation for the temperature
profile calculated directly from Cattaneo–Vernotte equation
for a two-layer system. This approximation improves when the
modulation frequency increases. In the case shown in Fig. 5,
this happens when the frequency is such that f [5� 104 Hz. It
can be inferred that the effective thermal diffusivity formula
provides a useful result in the study of layered systems and
may be the basis for the development of effective thermal
properties formulas in the study of complex heterogeneous
systems. This could be helpful in the evaluation of the role of
hyperbolic effects in systems where abnormally high thermal
conductivities have been reported, in contradiction with the
values predicted by the traditional mean field theories based
on Fourier law [19,20].

- For higher frequencies (usj[1; j ¼ 1;2), in the hyperbolic
model the amplitude becomes independent of the modulation
frequency while in the parabolic model it tends to zero, which
indicates that for these range of frequencies the hyperbolic
thermal waves can travel larger distances than the predicted by
the parabolic model.

It is straightforward to show that when the thermal relaxation
times are changed, restricted to values allowed by Eq. (32), the
agreement between the approximated amplitude using the corre-
sponding effective model (see Eq. (24)) and the amplitude calcu-
lated directly using the Cattaneo–Vernotte equation (see Eq. (23)),
remains. Additionally the difference between the results obtained
from the parabolic and hyperbolic approaches, decreases when the
thermal relaxation time of each layer moves away of their corre-
sponding least upper bounds and becomes negligible when the
thermal relaxation times of each layer tend to zero.

The presented results for the effective thermal properties can be
used as the basis in the development of general formulas for the
analysis of thermal properties when considering thermal resistance
between adjacent layers, more general approaches as dual phase
lag models or more sophisticated ones using Boltzmann transport
equation [16,32,42–44].

4. Conclusions

Hyperbolic thermal wave transport in layered systems is
analyzed using the Cattaneo–Vernotte heat conduction equation
considering a modulated thermal excitation with Dirichlet and
Neumann boundary conditions. It has been shown that when both
layers are thermally thin or thermally thick, analytical expressions
for the effective thermal properties as a function of the thermal
properties of the individual layers are obtained.

It has been demonstrated that for thermally thick layers, the
hyperbolic effects are more remarkable when the thermal relaxa-
tion time is close to the thermalization time of the medium. A new
formula for the effective thermal diffusivity, in the hyperbolic
approach, was obtained when both composing layers are thermally
thick. It was also shown that the developed effective model
provides a good approximation for the temperature profile of
a layered system obeying the Cattaneo–Vernotte equation. The
enhancement of heat transport is due to the fact that the analysis of
the effective thermal diffusion privileges the role of thermal
diffusivity above the thermal relaxation time. As a consequence, the
spatial decay of the thermal wave when going through the material,
considering hyperbolic effects, is smaller due to the effect of the
second order time derivative in hyperbolic heat conduction equa-
tion. This induces an increase of effective thermal diffusivity of the
composed material. Our results establish the basis for the devel-
opment of hyperbolic heat transport models in complex systems
and their applicability in the interpretation and analysis of exper-
imental data.
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